
3
4-approximation for Max Sat via Randomized Rounding 1

• Recall the MAX SAT problem : the input is a CNF formula φ on n variables x1, . . . , xn andm clauses.
Let C denote the set of all clauses. Each clause is an AND of a collection of 1 or more literals. In
particular, different literals could have a different number of literals, and some could even have just
one. In this sense, this problem differs from MAX 2SAT where every clause had exactly two literals.
The objective is to find an assignment of variables to {true, false} so as to maximize the number of
satisfied clauses. In this note, we describe a randomized 3

4 -approximation.

Exercise:KKY Recall that we described a local search algorithm which was a 3
4 -approximation

for MAX 2SAT. Can the same algorithm be modified to give a 3
4 -approximation for MAX SAT?

• The final 3
4 -approximation will in fact be the “best of two” different randomized algorithms, each of

which are individually are approximation algorithms with worse factors. The first algorithm is a very
simple algorithm : independently assign each variable xi ∈ {true, false} uniformly at random.

1: procedure NAIVE RANDOMIZED(φ):
2: Independently, assign each variable xi ∈ {true, false} uar.

Theorem 1. If every clause has at least k literals, NAIVE RANDOMIZED is an (1 − 2−k)-
approximation. In particular, it is a 1

2 -approximation for MAX SAT.

Proof. Given a clause C, let ZC be the indicator variable it is satisfied; Exp[alg] =
∑

C∈C Exp[ZC ].
If the clause C has k literals, then Pr[ZC = 1] = 1− 2−k.

• An LP Relaxation and a (1 − 1
e )-approximation. Next we see a “max-coverage” style 1 − 1/e-

approximation via randomized rounding. We have a variable yi for every variable xi indicating
whether it is set to true or false. For each clause C, we have a variable zC indicating whether it
is satisfied. Let C+ be the variables in C which appear in C as is, and C− be those variables which
appear in C as the complement. The following is an LP relaxation for Max-SAT.

opt ≤ lp(φ) := maximize
∑
C∈C

zC (MaxSAT-LP)

zC ≤
∑
i∈C+

yi +
∑
j∈C−

(1− yj) ∀C ∈ C (1)

0 ≤ zC , yi ≤ 1, ∀i ∈ [n], C ∈ C (2)

1Lecture notes by Deeparnab Chakrabarty. Last modified : 17th Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



1: procedure IND. RANDOMIZED ROUNDING(φ):
2: Solve (MaxSAT-LP) to get yi’s and zC’s.
3: Independently, assign each variable xi the value true with probability yi.

Theorem 2. IND. RANDOMIZED ROUNDING is an (1− 1
e )-approximate algorithm.

Proof. Fix a clause C. It suffices to prove that it is satisfied with probability ≥ zC · (1− 1/e). If
so, then we would be done by linearity of expectation; the expected number of clauses satisfied is
≥ (1− 1/e) · lp(φ).
Indeed, it is satisfied if one of the variables in C+ is set to true or if one of the variables in C− is set
to false. So, the probability it is not satisfied is

Pr[C not satisfied] =
∏
i∈C+

(1− yi) ·
∏

j∈C−
yj ≤︸︷︷︸

since 1−t≤e−t for all t

∏
i∈C+

e−yi ·
∏

j∈C−
e−(1−yj)

= e−(
∑

i∈C+ yi+
∑

j∈C− (1−yj)) ≤ e−zC

Therefore, the probability C is satisfied is ≥ 1 − e−zC ≥ zC(1 − 1/e). In the last inequality we
have used the fact that the function g(t) = 1 − e−t is concave, and thus when t ∈ [0, 1] we have
g(t) ≥ tg(1) + (1− t)g(0) = t(1− 1/e). Since zC ≤ 1, the proof follows.

Exercise: KK♥ Strengthen the above analysis to show that if C has k literals, then the proba-
bility is it satisfied is zC ·

(
1− (1− 1/k)k

)
. Of particular importance is the case k = 1, 2. That

is, if C has 1 literal, then the probability it is satisfied is zC (this should be immediate), and if
C has 2 literals, then the probability it is satisfied is ≥ 3

4 · zC . The main idea is to not use our
“favorite” inequality, namely 1 + t ≤ et for all t, but rather use AM-GM.

• Obtaining 3/4 by taking best of both. To get better than 3/4, one has to in fact do the exercise above.
For the time being, let us believe the statement of the exercise. Then one notices the following : if
the size of C is large, then the chance of satisfying the clause is “higher” for the first algorithm and
“lower” for the second. Indeed, when C has only one clause (the “worst” case for the first algo),
the second algorithm satisfies it with no loss when compared against zC . This immediately suggests
the following : run both algorithms and pick the best. One nice way of incorporating “best of two
algorithms” is to flip a coin and pick one, and argue about the average. If this average itself is good,
then the best can be only better.

1: procedure BEST OF BOTH(φ):
2: Flip a fair coin.
3: If it is heads, run NAIVE RANDOMIZED(φ).
4: If it is tails, run IND. RANDOMIZED ROUNDING (φ).

2



Theorem 3. BEST OF BOTH(φ) is a 3
4 -approximation algorithm.

Proof. Fix a clause C. We now argue that the probability it is satisfied is ≥ 3
4 · zC . This would prove

the theorem. Note, crucially, that this probability is over the coin toss in Line 2, and the coin-tosses in
the individual algorithms. Indeed, suppose pC is the probability C is satisfied in NAIVE RANDOM-
IZED and suppose qC is the probability that C is satisfied in IND. RANDOMIZED ROUNDING. Then,
the probability C is satisfied in BEST OF BOTH is exactly pC+qC

2 . Let’s call this πC .

Suppose C has k literals. Then, we know pC = 1− 2−k ≥ zC(1− 2−k) since zC ≤ 1. We also know
qC ≥ zC (1− 1/e). Therefore, if k ≥ 3, we get

πC ≥
1

2
·
(
7

8
zC +

(
1− 1

e

)
zC

)
>︸︷︷︸

using a calculator

0.75zC

If k = 1, 2, then we use the exercise above. When k = 1, we get πC = zC
4 + zC

2 = 0.75zC . When
k = 2, we get πC = 3zc

8 + 3zC
8 = 0.75zC .

Notes

Approximation algorithms for Max-SAT was first studied in the seminal paper [4] by Johnson which con-
tained the NAIVE RANDOMIZED algorithm described above. It also contained another greedy algorithm
achieving the same ratio. The first 3

4 -approximation for Max-SAT is given in the paper [6] by Yannakakis.
Instead of using the linear programming relaxation explicitly, the paper constructs network flow instances
and then uses this to get the assignment. The presentation here is from the paper [3] by Goemans and
Williamson. More recently, there have been other simpler 3

4 -approximation algorithms; we refer the reader
to the papers [2] by Buchbinder, Feldman, Naor, and Schwarz, and [5] by Poloczek, Schnitger, Williamson,
and van Zuylen. All of these algorithms can be derandomized. The best approximation algorithms for
Max SAT have been obtained by rounding semidefinite programming (SDP) relaxations. The current record
holder are algorithms in the paper [1]; one of their algorithms is a provable ≈ 0.797-approximation, while
another gives a ≈ 0.8434-factor based on an unproved conjecture about a function in high-dimensional
geometry.

3



References

[1] A. Avidor, I. Berkovitch, and U. Zwick. Improved approximation algorithms for max nae-sat and max
sat. In Proc., Workshop on Approximation and Online Algorithms (WAOA), pages 27–40. Springer,
2005.

[2] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz. A tight linear time (1/2)-approximation for
unconstrained submodular maximization. SIAM Journal on Computing (SICOMP), 44(5):1384–1402,
2015.

[3] M. X. Goemans and D. P. Williamson. New 3
4 -approximation algorithms for the maximum satisfiability

problem. SIAM Journal on Discrete Mathematics (SIDMA), 7(4):656–666, 1994.

[4] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System Sci.,
9(3):256–278, 1974.

[5] M. Poloczek, G. Schnitger, D. P. Williamson, and A. Van Zuylen. Greedy algorithms for the maximum
satisfiability problem: Simple algorithms and inapproximability bounds. SIAM Journal on Computing
(SICOMP), 46(3):1029–1061, 2017.

[6] M. Yannakakis. On the approximation of maximum satisfiability. J. Algorithms, 17(3):475–502, 1994.

4


